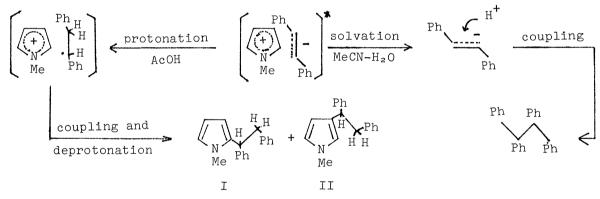
THE PHOTOADDITION OF STILBENE TO 1-METHYLPYRROLE. THE EFFECT OF PROTIC SOLVENTS

Tadatoshi KUBOTA and Hiroshi SAKURAI

The Institute of Scientific and Industrial Research, Osaka University,
Suita, Osaka, Japan

Irradiation of an acetic acid solution of trans-stilbene and l-methyl-pyrrole afforded l-methyl-2-(1,2-diphenylethyl)pyrrole (I), l-methyl-3-(1,2-diphenylethyl)pyrrole (II), and 1,2-diphenylethyl acetate (III), though irradiation of stilbene in neat l-methylpyrrole gave complex mixtures.

In the preceding paper, we have reported that excited singlet stilbene reacts with pyrrole to give two 1:1 adducts and the NH proton of pyrrole plays an important role in this reaction. In this paper, we report on the photoreaction of stilbene and 1-methylpyrrole, which was greatly accelerated by the use of an acidic solvent (acetic acid).


Irradiation of trans-stilbene in 1-methylpyrrole, followed by chromatography on silica gel, gave an unknown, labile material and meso-1,2,3,4-tetraphenylbutane $(9 \%)^{3}$ as the major products. 1:1 Adducts such as the photo-adducts of stilbene and pyrrole were not formed in an appreciable amount.

The less reactivity of 1-methylpyrrole compared with pyrrole is consistent with the failure of aliphatic tertiary amines 4) and 1-methylpyrrole 5) to form adducts efficiently on irradiation with benzene. Since the photoaddition of benzene and tertiary amines is known to be accelerated in the presence of water, 4) we repeated the reaction of 1-methylpyrrole and stilbene in the presence of water. However, irradiation of a solution of trans-stilbene (0.8 g) and 1-methylpyrrole (10 g) in acetonitrile-water (3:1 v/v, 120 ml) merely gave meso-1,2,3,4-tetraphenylbutane (18 %) 3) as the main product. 6)

The recent, interesting report 7 by Bryce-Smith and his co-workers of acid-catalyzed photochemical reactions led us to carry out the reaction in the presence of acetic acid. A solution of trans-stilbene (1 g) and 1-methylpyrrole (8 g) in acetic acid (120 ml) was irradiated for 19 hr. Chromatography on silica gel gave adducts I (24 %), II (10 %) and III (32 %), and 1,2,3,4-tetraphenylbutane (7 %). Adduct III was identified as 1,2-diphenylethyl acetate by a comparison of its IR and NMR spectra with those of an authentic sample. Compounds I and II were shown to be 1:1 adducts of stilbene and 1-methylpyrrole by elemental analyses and the mass spectra ($^{\text{th}}$ 261). The IR spectra of I and II showed no absorptions characteristic of NH. The NMR spectrum of I showed a singlet at δ 3.16 (3H, N-Me), two doublets of doublets at 3.2 (2H, methylene protons, J=9, 13, 5.5, and 13 Hz), a doublet of doublets at 3.99 (1H, a methine proton, J=9 and 5.5 Hz), triplets at 5.91 (1H, a β -proton of pyrrole, J=2.5 Hz) and at 6.32 (1H, an α -proton of pyrrole, J=2 Hz), and multiplets at 6.08 (1H, a β -proton of pyrrole) and at 7.0 (10H, aromatic protons). The signals at δ 5.91 and 6.08 were assigned to β -protons

of pyrrole. The NMR spectrum of II showed two doublets at δ 3.17 (2H, methylene protons, J=6.2 and 8.5 Hz), a singlet at 3.49(3H, N-Me), a doublet of doublets at 4.01 (1H, a methine proton, J=6.2 and 8.5 Hz), triplets at 5.83 (1H, a β -proton of pyrrole, J=2 Hz) and 6.33 (1H, an α -proton of pyrrole, J=2 Hz), and multiplets at 6.14(1H, an α -proton of pyrrole) and 7.1 (10H, aromatic protons). These spectra were similar to those of the adducts of pyrrole and stilbene. Thus, adducts I and II were characterized as 1-methyl-2-(1,2-diphenylethyl)pyrrole and 1-methyl-3-(1,2-diphenylethyl)pyrrole, respectively.

The formation of these adducts was not sensitized by triphenylene which sensitized the trans to dis isomerization of trans-stilbene. Furthermore, the fluorescence of trans-stilbene was effectively quenched by 1-methylpyrrole and this fluorescence quenching was due to the exciplex formation. These results suggest that the addition involves singlet-excited trans-stilbene and probably the polarized exciplex. In a polar solvent such as acetonitrile-water, this exciplex is expected to dissociate into the solvated free radical ions. The protonation of the stilbene radical anion followed by the coupling of the resulting radicals give 1,2,3,4-tetraphenylbutane. In the more efficient proton-donating solvent such as acetic acid, the stilbene part of this exciplex might be protonated and the combination of the resulting 1,2-diphenylethyl radical and 1-methylpyrrole radical cation, followed by deprotonation, might give adducts I and II.

References

- 1) T. Kubota and H. Sakurai, Chemistry Lett., 923 (1972).
- 2) This product was not transformed into adducts I and II by acetic acid, indicating that different reactions occur between acetic acid and neat solutions.
- 3) The dl mixture will be also formed but could not be isolated. D. P. Wyman, J. Org. Chem., <u>27</u>, 3712 (1962).
- 4) D. Bryce-Smith, M. T. Clarke, A. Gilbert, G. Klunklin, and C. Manning, Chem. Commun., 916 (1971).
- 5) M. Bellas, D. Bryce-Smith, and A. Gilbert, Chem. Commun., 263 (1967).
- 6) A small amount of adduct I (2 %) was isolated.
- 7) D. Bryce-Smith, G. B. Cox, and A. Gilbert, Chem. Commun., 914 (1971). D. Bryce-Smith and G. B. Cox, ibid., 915 (1971).
- 8) This yield was calculated by means of glpc, including the total amount of mesoand dl-isomers.
- 9) W. A. Bonner and F. D. Mango, J. Org. Chem., <u>29</u>, 430 (1964).
- 10) N. Mataga, T. Okada, and N. Yamamoto, Chem. Phys. Lett., 1, 119 (1967).